455 叠层器件,双倍的“快乐”(求订阅)(3/6)
试剂的品牌也是实验条件之一。
哪怕两种试剂,名称一样,分子结构一样,纯度也一样,但实际用起来,可能会有非常大的差别。
贸然更换品牌,可能会有不可预知的况出现。
比如,之前陈婉清做有机光伏倒结构器件的时候,她用到的是三氧化钼蒸镀靶材。
中途有一次旧的三氧化钼用完了,本来想回购原来那家,结果发现断货了,需要等两周才有货。
当时为了实验能继续进行,她便换了另外一家,纯度都是一样的,材料检验报告也没有问题。
但做出来的器件能就是不行,比之前用的那种三氧化钼效率普遍低2%左右。
后来换回了原来那种三氧化钼,器件效率才恢复正常。
至于造成这种现象的原因,谁知道呢?
或许是和靶材的颗粒有关,或许是和里面某种微量的杂质有关,也可能刚好买到了一瓶次品……
这些都是有可能的,就算强行找原因,也没有太大的意义。
忙忙碌碌,花费半个月时间,终于找到了原因,最后有什么收获吗?
没有,只是单纯的费了半个月的时间罢了。
实验室中,许秋和和莫文琳两一边工作,一边闲聊着。
直到韩嘉莹进实验室,号称:“我写文章写的有些累了,过来随便看看。”
两这才停下了
流,各奔东西。
莫文琳转身离开,说道:“我回去写文章啦。”
于是,许秋换了一个聊天的对象,他一边和学妹侃大山,一边制备器件。
旋涂氧化锌,作为第一层传输层;
旋涂pfn-br,作为第二层传输层;
旋涂不同厚度的j4:pcbm:idic-m,作为底电池有效层;
旋涂m-pedot,作为第三层传输层;
旋涂氧化锌,作为第四层传输层;
旋涂不同厚度的pce10:ieico-4f,作为顶电池有效层;
蒸镀三氧化钼,作为第五层传输层;
蒸镀银,作为电极。
这是之前经过优化后得到的最佳加工工艺,许秋直接套用过来。
毕竟现在只是将idic-4f更换为idic-m,传输层方面的加工工艺大概率不会存在很大的差异。
一直忙活到晚上十点多,许秋终于完成了新的一批idic-m体系叠层器件的制备与能测试,最高效率达到了14.67%。
同时,模拟实验中的idic-m体系的初步摸索结果也出来了,最高是14.97%,还有不小的上升空间。
而idic-4f体系的结果,经过这些天的多次优化,目前已经达到了15.32%,上升空间并不大。
虽然这批idic-m体系的叠层器件效率,暂时没有idic-4f体系的高,但许秋也不是很在意。
他本来也不指望只靠制备一次器件就实现效率突,这次尝试,主要是为了验证自己的思路有没有问题。
现在仅仅是初步尝试,idic-m的体系就已经做出了与idic-4f相当的器件效率,说明当前优化的思路大概率是正确的。
也就是说,有很大的几率能把叠层器件效率上限,再往上提升一些,或许能够达到15.5%以上。
至于能不能上16%,这就要看运气了。
完成了现实中的初次尝试,剩下的工作,许秋主要还是打算由模拟实验室进行大范围的摸索。
因为相较于普通的单结器件,双终端法制备的叠层器件在优化时的工作量翻倍都不止,有系统的帮忙可以省下不少时间。
具体来说,在单结电池中,只有唯一的有效层,只需要优化一个有效层的膜厚,摸索范围通常在80-150纳米之间。
而且对于绝大多数的有机光伏体系,把有效层的膜厚做到100纳米左右,就算偏离了最佳膜厚,通常也能达到最佳膜厚效率的90%。
如果不是冲刺效率的工作,可以做的不那么细。
而双终端法制备的叠层器件,有两个有效层,需要同步优化两个膜厚。
两个膜厚就是双倍……不,是相乘的“快乐”。
不仅如此,摸索的范围也更大,底电池一般要从50纳米做到300纳米,顶电池要从50纳米做到200纳米。
以底电池膜厚50-300纳米,顶电池膜厚50-200纳米为例。
就算是以非常低的度,比如50纳米为间隔进行摸索,也需要做6*4=24组器件。
这么低的度,在冲刺高效率的时候,显然是行不通的。
因为有时候膜厚差10纳米,效率可能就会偏差0.3%、0.5%。
本章未完,点击下一页继续阅读。